Given an array of integers and an integer k, you need to find the total number of continuous subarrays whose sum equals to k.
Example 1:
Input:nums = [1,1,1], k = 2
Output: 2
Note:
- The length of the array is in range [1, 20,000].
- The range of numbers in the array is [-1000, 1000] and the range of the integer k is [-1e7, 1e7].
找出一个数组中连续元素之和为k的组合个数。
1. Brute Force 剪枝
求出每一个元素与后面元素之和的最大最小值,当一个元素与后一个元素的最小值之和大于k
或者与后一个元素的最大值之和小于k
就可以断定后面不存在满足条件的集合,可以直接跳过。
class Solution {
public int subarraySum(int[] nums, int k) {
if (nums == null) return 0;
int r = 0;
int[] min = new int[nums.length];
int[] max = new int[nums.length];
min[nums.length - 1] = nums[nums.length - 1];
max[nums.length - 1] = nums[nums.length - 1];
for (int i = nums.length - 2; i >= 0; i--) {
min[i] = Math.min(min[i + 1] + nums[i], nums[i]);
max[i] = Math.max(max[i + 1] + nums[i], nums[i]);
}
for (int i = 0; i < nums.length ; i++) {
int cur = nums[i];
if (cur == k) r++;
for (int j = i + 1; j < nums.length; j++) {
if (cur + nums[j] == k) r++;
if (cur + min[j] > k || cur + max[j] < k) break;
cur += nums[j];
}
}
return r;
}
}
时间复杂度为O(m * n),空间复杂度为O(n)
2. DP
将每次累加的结果保存起来,而其中任意一段的累加和可以通过两段累加和相减得到
利用上述思想可以:
- 遍历整个数组,把累加和计算一遍并保存起来
- 累加和减去我们期望的k值,如果结果在之前的累加结果中存在则可判定为符合条件。
public class Solution {
public int subarraySum(int[] nums, int k) {
int count = 0, sum = 0;
Map<Integer, Integer> map = new HashMap<>(nums.length);
map.put(0, 1);
for (int i = 0; i < nums.length; i++) {
sum += nums[i];
if (map.containsKey(sum - k)) count += map.get(sum - k);
map.put(sum, map.getOrDefault(sum, 0) + 1);
}
return count;
}
}
时间复杂度为O(n),空间复杂度为O(n)